
KSME Journal, Vol. 1, No. 2, pp. 121~127, 1987. 121 

I N C O M P R E S S I B L E  L A M I N A R  FLOW N E A R  A C O R N E R  
OF 90 ~ ANGLE 
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(Received March 12, 1987) 

Numerical integration is conducted for two-dimensional incompressible laminar flow over a 900 corner. Using Newton's 
method, the Navier-Stokes equations are generated up to Re = 2800, with the result that the corner generates a ~cond bubble near 
Re=800. There exist distinct patterns for the evolution of the pressure gradient and the position of a separation point. As Re 
is increased the pressure gradient tends to approach zero over the recirculated region and shows sharper variations near the 
separation and reattachment points. Thus, these results confirm the free streamline model for separation proposed by Sychev. 
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NOMENCLATURE 
i : Index to denote the step number in C-direction 
I : i at the downstream edge ~ = ~,, 
j : Index to denote the step number in r/-direction 
J : j  at rl=~m 
M : Jacobian for z-~p 
p : Non-dimensional pressure 
Re : Reynolds number 
s : Coordinate along the wall 
w :x,+iyl 
x~, y~ : Coordinate system in w-plane 
x, y : Coordnate system in z-plane 
x, : Separation point 
z : x+iy  

: Vorticity 
77 : Normal compoaent of p 
r/,, : Displacement thickness of the boundary layer flow 

over a wedge 
~,, : ~ at the upper edge 
~x : Tangential component of p 
~'~ : ~ at the downstream edge 
p : 5 + i ~  
T :Wall  shear defined as Eq. (14) 
r : Stream function 
gr : Eq. (6) 
~',~ : ~r at 7/= r/m 

1. INTRODUCTION 

Steady laminar flow at high Reynolds numbers over a 
submerged obstacle is merely an academic problem, as in 
reality flows are rarely steady nor laminar at high Reynolds 
numbers. However, because it concerns the basic problem of 
the limiting solutions as Re~oo,  this problem has 
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received much attention. Most of the fundamental work 
regarding this problem has focussed on laminar flow over a 
circular cylinder. Until the 1970's, many numerical investiga- 
tions (Dennis and chang, 1970 : Son and Hanratty, 1969 ; 
Takami and Keller 1969; Patel, 1976) :have revealed that 
the length of the wake bubble behind the circular cylinder 

1 
increases as O(Re v). Very recently, Fornberg (Fornberg, 
1980 ; Fornberg, 1986) presented the numerical solutions of 
the Navier-Stokes equations for flows past a cylinder at 
Reynolds numbers up to 600. His remarkable finding was that 
the width of the wake begins to grow as O(Re) from 
about Re = 400. The large wake bubble consists mainly of a 
pair of vortices low and very uniform vorticity. The region 
between the cylinder and these vortices has nearly zero 
interior vorticity. His results for such a compatively large 
Reynolds number flow were made possible by the availability 
of a super computer, the use of the Newton's method, and a 
special treatment of the far-field boundary conditions. 

On the other hand, little attention has been paid to flows 
with bubbles on the order of the body scale, such as flow over 
the forward-facing step, stagnation flow impinging on an 
infinite fiat plate with a normally protruding finite flat plate 
(the present case), and flow over a trough, etc. In these cases, 
the separated regions will contain the body-scaled eddies at 
high Reynolds numbers.  Intuit ively.  it is expected that  
growth of the bubble will be somewhat constrained by the 
inertia force of the oncoming inviscid flow. Therefore, fea- 
tures exhibited by this flow field will differ from those with 
large bubbles in the wake. 

The purpose of this paper is to study (i) the structure of 
the flow field near the separation point and the reattachment 
point, and (ii) the various existing wake models for high 
-Reynolds-number flow past an obstacle. 

2. THE GEOMETRY AND THE 
GOVERNING EQUATIONS 

The geometry of the solid wall to be concerned in this 
paper consists of a finite flat plate and a semi-infinite flat 
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Fig. 1 Geometry of the problem and the boundary conditions 
in the z-p lane;  (1) No-s l ip ;  (2) Symmetry ;  (3) 
Inviscid; (4) Boundary layer 
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+ M ~o ( 1 0 M  O*Oo M O~ 1 aM 0 " )  v ' * = O ' O o  (5) 

where M is Jacobian for z --* p and 

r  ( ~ -  7ho) + ~ ,  (6) 

where Ik is stream function. Here and henceforth, all the 
fluid properties are non-dimensionalized with respect to the 
suitable references. Re is based on the kinematic viscosity of 
the fluid, the length of the frontal plate, and the reference 
velocity ; the reference velocity will be automatically defined 
in the course of the coordinate  t ransformat ion  (3). The  
first term of the right- hand side of (6) is the asymptotic 
solution of the boundary layer equation for large r/ and 
farther downstream from the origin, and 2$rh, represents the 
displacement thickness. Detailed discussion regarding (6) is 
made in (Suh, 1986). In other words, ~r is a stream func- 
tion perturbed from Hiemenz flow. 

plate as shown in Fig. 1. Here, the length of the frontal plate 
is used to normalize the coordinates. 

Because of the geometry, our analysis will be facilitated by 
a suitably chosen coordinate system. To incorporate all the 
local features, we introduce a two-step conformal mapping; 

z ~ w ~ o (1) 

where 

z=x+iy,  w=xl+iy,  o=~+i7 (2) 

w =  1 -  ( l - z )  2 (3) 

w = o  2 (4) 

The first mapping (3) is the so called Schwarz-Christoffel 
transformation and considers the flow pattern far from the 
corner in the inviscid zone. The transformation also allows 
the walls to be represented by the simple equation, r/=0, 
~>0, so that the no-slip condition on the wall is simplified. 
The coordinates obtained by the second mapping (4) are 
the optimal coordinates  (Kaplun 1954) incorporat ing the 
singular nature near the leading edge and the boundary layer 
flow farther downstream. In terms of stream function, ~, and 
vorticity, ~', the Navier-Stokes  equations for steady, two 
-dimensional and incompressible flow in the z-plane can be 
written as 

7 2  _ 2 R O ( ~ ' ,  r . ~ r  Vx~r = e 9  (x, y) 

which can be coupled to yield in the p-plane : 

20/14 
V '~r  + I ~ ~ - + 2 R e  ( ~ -  ~w) 1 -~-V 2 ~" 

+ I  2M aM3~ 2Re~l-~V2~r + I  - I V 2 M +  2ReM 

OM ( ~ - ~ w )  
07] 

M O~ ~ V2gr+Re V2~lr_ O VVO~ 

3. N E W T O N ' S  M E T H O D  F O R  S T E A D Y  
S O L U T I O N S  A N D  T H E  
N U M E R I C A L  S C H E M E  

Most numerical methods for solving the s teady-state  
Navier-Stokes equations are either time-dependent or time 
-l ike in their iterations (Roache, 1975; Roache and Ellis, 
1975). The primary diffeculties associated with these un- 
steady approaches are two-fold ; the problem of stability and 
the problem of convergence. Newtons method is widely used 
in solving especially the nonlinear algebraic equations. Since 
the beginning of the 1980's, the idea of applying Newton's 
method to solve the Navier-Stokes equations numerically has 
appeared in a number of papers (Fomberg, 1980 ; Fornberg, 
1986 ; Walter  and Larsen, 1981). The rate of i terative con- 
vergence offered by Newton's method is quadratic and thus 
much faster than any other iterative scheme mentioned 
above. The main disadvantage of this so called "FON" 
method (the Four th  Order  Newton '  method  named  by 
Walther and Larsen (Walter and Larsen, 1981)) is that for 
a grid system of I x J  with J<I, approx imate ly  2 x l x f f  
variable storages are needed at the least. Depending on the 
type of machine, a supplementary memory system can be 
used ; therefore, the CPU time wil be increased accordingly 
in writing and reading the data. 

Another importnat factor involved in Navier-Stokes calcu- 
lations is the implementation of the far-field boundary condi- 
tions. A detailed study made by Fornberg(Fornberg,  1980) 
showed that the influence of the far-field boundary condi- 
tions on the solution became more significant as Reynolds 
number was increased. 

Until now there has not been a numerical solution of the 
Navier-Stokes  equations for the incompressible corner flow. 
Leal's work (Leal, 1973), is for flow over a finite flat plate 
when the flow at a large distance is given by the stream 
function ~l,=xy and plate is situated on the x -ax i s  from -1 
to 1 (Leal, 1973). Although the basic inviscid flow is the same 
as that over a 90 ~ corner wall, the boundary conditions are 
different. 

In the present study, we shall adopt the Newton's method to 
study the corner flow problem. It should be mentioned here 
that there are two regions which add difficulty to this prob- 
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lem ;areas near the leading edge and near the corner. As Re  
is increased, the boundary layer thickness becomes thinner, 
which requires finer step sizes in the streamwise direction 
near the leading edge. These finer step sizes allow for the 
adequate treatment of the abrupt change of the flow property 
in this region. 

On the other hand, when the separation bubble appears 
near the corner it is widened and lengthened as Re  is in- 
creased. Thus, even with the use of the Newton's method, the 
stability and accuracy of the solution is restricted by the 
boundary layer thickne~,~, the size of the bubble and thus the 
Reynolds number. 

Formal application of the Newton' s method to (5) yields. 

A g r = B ~ ,  (7) 

where IP is the present value and ~ i s  the one to be 
obtained. A and B are linear operators defined as 

-b R V a  q- s l  a~--{- S2  ~ - ,  (8) 

~ ~ - W / ~ v  ~ 
( 1  aM a~" 10/1// a~') 

+ M o~ a~ M O~ 371 v a" (9) 

P~, P~ . . . . .  S~ can be expressed in terms of M and ~ (refer 
to (Suh, 1986) for detai]ied formula~. Boundary conditions 
of the present problem are as shown in Fig. 2. The bound- 
ary condition on (4) of Fig. 2 is based upon the bundary 
layer solution for Hiernenz flow. One of the boundary condi- 
tions on (3) of Fig. 2, i .e. ,  ~'=0, is clearly understood. As 
was mentioned by Fornberg (Fornberg, 1980), the conven- 

tional assumption ~ =0 or 3 ~  - 0  for the other bound- 
8V2 - 

ary condition would bring forth significantly erroneous 
results, especially at high Reynolds number. The condition 
chosen in this study comes from the potential flow solution 
for the region outside of (3) of Fig. 2, and thus the prob- 
lem of finiteness in the computational domain can be par- 
tially overcome. 

The  well  known solut ion [refer  to e.g. (Hi ldebrand ,  
1976) ] of the inviscid equation 

V 2 ~ = 0  

t/., 

r  

r  
•k,%, 

(3) 

(4) 
(2) 

Integration of ~2r  = 0. 

02r 
yg~- = o 

!(~-='1'} = f~('l) 
~ '0 , f  " 

(l) 

Fig. 2 Boundary conditions in the p-plane 

for the inviscid zone (above (4) of Fig.-2J is 

(z/, = r / -  r/m). (11) 

Equation (11) is used to relate ~" (4, ~m + V r/) to five un- 
knowns g (4, 7/m) of the most adjacent  mesh points and 
one unknown ~" (5 m, ,1 ~) ; al though the ac tual  phys ica l  
domain in ~ is infinite, as is also considered in (11), this 
must be cut for the computational domain at a suitable 
distance, i. e., $ =  $=, where the boundary layer assumption 
is val id as a mat te r  of accuracy.  Here g for $>$~ is 
assumed to be of the same magni tude  as gY at $ =  Sm 
(Fornberg, 1986). 

We define the column vectors r Ca, "'" r r as 

~i '=) 

r  ..~i,a ( i=2 ,  3, "", I ) .  

~ i , j  ] 

Then the appropriate finite difference formula for (7) and 
(11) can be represented by the block penta-diagonal matr ix 
as follows ; 

A22 
A32 
A42 
0 

0 
0 
0 

o.. 
... 

.oo 

AI-a,  1-1 
A t - l ,  1-1 
AI ,  1-1 

A2s A24 0 0 
Aaa Aa, Aas 0 
A4s A ,  A,5 A,8 
Asa A~4 Ass As~ 

. . . . . .  0 A~-2 ,  

. . . . . . . . .  0 

A21 
Aal 
A41 
Asl  

A,-2 ,  , 
A I - I ,  1 
A1, 1 

I-4 

0 "" 
0 "" 
A57 0 +.. 
AI--2, I--3 AI--2, 1--2 
A t - l ,  l - s  AI-I, z-2 
0 0 

Ca a 

i := ." 1 Q,  

(12) 

where Q~ is the load vector and all elements of the coeffecient 
matr ix  are ( J - l )  • ( J - l )  and d iagonal ized .  Equat ion  
(12) is solved by the block unit using the Gaussian elimina- 
tion method with partial  pivoting. The computational proc- 
ess is apparent and it is repeated until a certain convergence 
criteria is met. 

4. NUMERICAL RESULTS AND 
DISCUSSIONS 

In the present study, we choose r/m to be fixed value 

6 
~ = - ~ •  (13) 

so that it can accomodate the growth of the bubble(s).  Here 
~,~ of (113) corresponds to the boundary layer edge for 
Hiemenz flow at Re = 100, where 6 is measured by the nor- 
mal component of the boundary layer coordinates. The coor- 
dinate system used throughout the calculation is shown in 
Fig. 3. We note that the leading edge singularity can be 
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Fig. 3 The Mesh System : I=101, J=41 

I 2 0 , J  2 20 2 .'40 

Y 

absorbed by the present system of coordinates, while the 
outer edge of the domain tends to follow the direction of the 
local flow so that there would be as few as possible unneces- 
sary meshes over the domain. Nevertheless, problems still 
exist in the mesh system. Near the corner, the scale factor 
Lecomes infinitely large, and thus any discretization scheme 
with this mesh might fail to represent the detailed flo~ field 
of this small region. The initial Re was 100, with the bound- 
ary layer solution for the Hiemenz flow used as the initial 
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value. It took only 5 itrations to attain the appropriate 
convergence limit for such relatively large recirculated flow 
as shown in Fig. 4 (a). The solution for Re = 100 is then used 
as the inbial value iv. obtaining that for Re=200, and so on. 
The increment of Re ;s 100 up to Re=800, 200 up to Re= 
1600, and 400 up to Re = 2800. 

It seems that only several iterations are suffecient to 
achieve the desired convergence criteria. Shown in Fig. 4 
through Fig. 6 are the levels of r and ~" for Re--100, 800, 
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2800, respectively. It is interesting to note from these results 
that  the corner generates a second bubble at about Re = 800, 
2800, respectively. It is interesting to note from these results 
that the corner ge~merate a second bubble at about Re=800. 
The second bubble, turns out to have much slower motion of 
fluid particle and is more viscous than the first one as seen 
from Fig. 6(a) and (b). In addition, the growth of this  
bubble is faster than the first one. It seems that  equi-vorticity 
lines tend to congregate especially on the bordering lines of 
the first bubble as Reynolds number is increased ; this result 
then, seems to support the Prandtl-Batchelor  model (Bat- 
chelor, 1956a; Batchelor, 1956b) where it is assumed that  
the bubble coinsists of constant vorticity. These results also 
suggest that  at higher Reynolds number, the thickness of the 
first bubble will decrease due to the faster growth of the 
second one. Furthermore, we note that the vortex center of 
the first bubble moves toward the wall x = l  as Re is in- 

~j Btasiu!s(0.~9~] _/II~[ 

o 

~ ~00 0"25 0'50 -0'75 I'25 ~'50 I'75 2'00 2'25 - 2 5 0  

Fig. 7 Distribution of the wall shear 

creased. This movement can also be seen in Fig. 7, where 
the magnitude of wall shear 

_ i 
r--~7~h'Z-~-L & J,-o 
r ~ 0.46960... (Blasius) 

as ~ - ' 0  
r --* 1.23258-.. (Hiemenz) 

a s  ~ ---~ oo 

(14) 

on the upstream surface decreases and that on the down- 
stream surface increases as Re is increased. Consequently, it 
is likely that the first bubble will break down into two 
smaller ones. The bubble in the downstream region will be 
smaller in size but have stronger vortex intensity than the one 
in the upst ream region. It is further conjectured that  the 
corner will generate more bubbles as Re is increased. Unfor- 
tunately, the range of Re for the present study is not suf- 
ficient to verify these trends. 

The pressure gradient  ap is given as ~s 

(15) 

where 

Os~" ~ ' .  s - 4  g .  z +,~ (6rh.,-4 V ~) 
o~s "= VoS 

where s is the distance along the wall from the leading edge. 
For  various values of Re, this pressure gradient is shown in 
Fig. 8. It is interesting to note that  as Re is increased the 
pressure gradient tends to zero over the recirculated region 
and changes more rapidly at the separation point near the 
leading edge and at  the reattechment point downstream. A 
similar but indistinctive trend was also observed by Leal 
(Leal, 1973). This trend, of course, supports the idea of the 
free streamline theory in which the pressure in the recirculat- 
ed region is assumed to be constant. Concerning the rapid 
change in the pressure gradients at the separation point (and 
rea t tachment  point) ,  we resor t  to de ta i l ed  s tudy of the 
flow structure around the separation point. Based on the 
asymptotic behavior of the free streamline pressure gradient, 
Sychev (Sychev, 1972) showed that  at  large Re, separation 
takes place under the action of a large local positive pressure 

I 
gradient, which "becomes infinite like O(Re-~)as Re is in- 

L - ~ - - ~ E  o60 OBO TOO 120 ixo ~60 ISO 2~0 
S 

File. 8 Distribution of the pressure gradient 
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creased. The extent of the region over which this pressure 

gradient has an effect tends to zero as Re-{  ; essentially,  
the structure of Sychev's model in the neighborhood of the 
separation point is the same as that  of the triple deck theory 
(refer to (Smith, 1982)for the element of the triple deck]. 
However, Sychev's model made it possible to reconcile the 
inviscid breakaway (the classical  jet theory) and the vis- 
cous separation (the boundary layer separat ion)  (refer to 
(Smith, 1979)for the reconciliation problem]. It is then of 
interest to observe whether or not there would exist enough 
room ahead of the separation point such that the boundary 
layer could develop over that region. The location of the 
separation point, xs, measured from the leading edge, is 
plotted in Fig. 9 against  Re. It is seen that  xs can be re- 
presented by 

Xs ~ C Re-{ (16) 

where C = I .  7445. Since the order of xs is higher than that 

of the interaction zone Re-~ in Sychev's model, our pres- 
ent study seems to lend further support for the free streamline 
model of separation at high Reymolds numbers. 

5. SUMMARY AND CONCLUSIONS 

In this paper, the Navier-Stokes  equations are solved 
numerically using Newton's method. The forth order part ial  
differential equation for ~b is used instead of the ~-~  system 
of equations. One of the boundary conditions at the upper 
edge of the domain(r /= r/m) is supplied from the integration 
of the inviscid equation in r/~ r/~ with the boundary condi- 
tion ~ = ~ m  at 77=r/re. For  the mesh system I •  the 
centered difference scheme yields ( I - 1 )  x ( J - i )  equa- 
tions. Using the appropriate vector notation, this set of 
equations is reduced to a matr ix  form where the coeffecient 
matr ix  is a penta-diagonal and each element block matr ix  is 
also diagonalized. The value of W for ~ ~ ~'m is assumed to 

be the same as that at ~" = ~'m, and is treated as one of the 
unknowns. The Gauss elimination method is then applied to 
solve the coeffecient matr ix in the block unit. The invese of 
the block matr ix  is obtaind with the aid of the Gaussian 
elimination method with partial  pivoting for stability and 
accuracy. Back substitution then follows to give new values 
of ~'. 

For a 90 o corner solutions are obtained for Re up to 2800. 
The results indicate that a second bubble begins to appear at 
approximate  Re=800. This  second bubble g rows  fas ter  
than the first one, thus causing the first one to become 
thinner. As Re is increased, the pressure gradient tends to 
zero along the wall surface in the recirculated regiofl, and the 
rapid change in the pressure gradient is confined to narrower 
regions near the separtion point and the reattachment point. 
The point of separation is simply represented by the formula 

(16) and thus approaches the leading edge like O(Re-�88 
The present results thus seem to confirm the free streamline 
model for separation proposed by Sychev. 
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